肺癌黄金靶点ALK靶向治疗的耐药问题

2024.09.30 责任编辑:陈醒 阅读量:63

ALK 的靶向治疗

目前在国内外获批的针对 ALK 的小分子酪氨酸酶抑制剂(TKI)有6种,可分为三代。
ALK 的靶向治疗

ALK-TKI 靶向治疗的耐药问题

对 ALK 靶向治疗的耐药性可大致分为 ALK 依赖性和 ALK 非依赖性两类。ALK 依赖性或“在靶”耐药性主要由 ALK 基因中出现的单个或复合突变引起,使肿瘤细胞持续依赖 ALK 活性。ALK 非依赖性或“脱靶”耐药定义为谱系变化或 ALK 非依赖性信号通路的激活,从而消除了 ALK⁺ 肿瘤细胞中的 ALK 依赖性。
肺癌黄金靶点ALK靶向治疗的耐药问题
ALK 依赖性耐药
在 50-60% 接受第二代 ALK 抑制剂治疗的患者中,耐药性是通过获得继发性 ALK 突变而产生的[14]。这些突变普遍发生在激酶结构域中,并通过 TKI 结合的直接空间位阻、蛋白激酶构象的改变和/或 ATP 结合的变化来产生耐药性[14-16]。
不同于 EGFR 突变型肺癌耐药突变中 T790M 突变占绝大多数的情况,ALK⁺ NSCLC 中导致耐药突变的 ALK 突变类型极为广泛,如 L1196M、G1202R、D1203N 等等[14]。
ALK 非依赖性耐药
约 50% 的第二代 ALK-TKI 耐药可以被归类为 ALK 非依赖性耐药,赋予 ALK TKI 耐药性的不同脱靶机制可能在不同患者之间发生,这使得 ALK 非依赖性耐药难以克服[17,18]。
ALK 非依赖性耐药的一个重要类别是旁路信号的激活,这是由基因改变、蛋白质表达变化和/或自分泌反馈信号的激活或失调引起的。在 ALK TKI 耐药肿瘤中已经描述了多个旁路轨道,包括受体酪氨酸激酶(RTK)MET、EGFR等的激活以及下游信号因子 MAP2K1、STAT3等的改变[19-23]。
此外,肿瘤可转化为不同的组织学亚型,从而导致耐药性[24]。尽管几乎所有新诊断的 ALK⁺ NSCLC 病例都是腺癌,但在接受各代 ALK TKI 治疗后的 ALK⁺ 肺癌患者中已发现小细胞肺癌转化[25-28]。

ALK-TKI 耐药的应对策略

ALK-TKI 序贯治疗
临床实践中不乏先使用一代 TKI,再转换至二代 TKI 的做法,但这种序贯治疗可能增加复合耐药突变的发生率。
以 ALK 为中心的替代方法
针对 ALK 突变的其他方法,例如变构抑制、共价抑制和蛋白降解靶向嵌合体(PROTAC)等,不过相关探索大多还处在临床前阶段,使用价值有待验证。
针对 ALK 非依赖性耐药的联合治疗
虽然 ALK-TKI 耐药相关的很多旁路耐药机制都已有针对性靶向药物可用,但 ALK-TKI 与其它靶向药物联合治疗的临床研究,疗效数据普遍不如人意,一大原因可能是联合用药的副作用较大,限制了用药剂量,另一原因可能是联合治疗会加速其它耐药机制的出现。
基于免疫机制的治疗
ALK 阳性 NSCLC 是著名的冷肿瘤,现有的免疫检查点抑制剂(ICI)也缺乏与 ALK-TKI 的协同增效,不过可以考虑将 ALK 作为个体化肿瘤疫苗的靶标。
肺癌黄金靶点ALK靶向治疗的耐药问题


参考文献
[1] Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994 Mar 4;263(5151):1281-4. 
[2] Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, Yamamoto T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997 Jan 30;14(4):439-49.
[3] Palmer RH, Vernersson E, Grabbe C, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 2009 May 27;420(3):345-61.
[4] Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013 Oct;13(10):685-700.
[5] Yao S et al. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS ONE 8, e63757 (2013).
[6] Hallberg B & Palmer RH Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer 13, 685–700 (2013).
[7] Du Z & Lovly CM Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).
[8] Ducray SP, Natarajan K, Garland GD, Turner SD & Egger G The transcriptional roles of ALK fusion proteins in tumorigenesis. Cancers 11, 1074 (2019).
[9] Gu TL et al. NPM–ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 103, 4622–4629 (2004).
[10] Butrynski JE et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).
[11] Ou SI, Zhu VW & Nagasaka M Catalog of 5′ fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100015 (2020).
[12] Soda M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
[13] Hrustanovic G et al. RAS–MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038–1047 (2015).
[14] Gainor JF et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
[15] Toyokawa G et al. Secondary mutations at I1171 in the ALK gene confer resistance to both crizotinib and alectinib. J. Thorac. Oncol. 9, e86–e87 (2014).
[16] Shaw AT et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).
[17] Shiba-Ishii A et al. Analysis of lorlatinib analogs reveals a roadmap for targeting diverse compound resistance mutations in ALK-positive lung cancer. Nat. Cancer 3, 710–722 (2022).
[18] Shaw AT et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J. Clin. Oncol. 37, 1370–1379 (2019).
[19] Dagogo-Jack I et al. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res. 26, 2535–2545 (2020).
[20] Katayama R et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra117 (2012).
[21] Hrustanovic G et al. RAS–MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038–1047 (2015).
[22] Crystal AS et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).
[23] Lee HJ et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26, 207–221 (2014).
[24] Quintanal-Villalonga A et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).
[25] Fujita S, Masago K, Katakami N & Yatabe Y Transformation to SCLC after treatment with the ALK inhibitor alectinib. J. Thorac. Oncol. 11, e67–e72 (2016).
[26] Takegawa N et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann. Oncol. 27, 953–955 (2016).
[27] Cha YJ, Cho BC, Kim HR, Lee HJ & Shim HS A case of ALK-rearranged adenocarcinoma with small cell carcinoma-like transformation and resistance to crizotinib. J. Thorac. Oncol. 11, e55–e58 (2016).
[28] Levacq D, D’Haene N, de Wind R, Remmelink M & Berghmans T Histological transformation of ALK rearranged adenocarcinoma into small cell lung cancer: a new mechanism of resistance to ALK inhibitors. Lung Cancer 102, 38–41 (2016).

返回上页
意见反馈

类型

联系方式

内容

DNA鉴定

根据孟德尔遗传定律(亲子鉴定的理论基础),孩子身上的遗传物质一半来自于生物学父亲(简称“生父”),一半来自于生物学母亲(简称“生母”),每个基因座上的两个等位基因也分别来自生父和生母。DNA亲子鉴定就是根据科学技术将子女的DNA信息与父亲、母亲的DNA信息相比对,如果符合即是亲生关系,不符则非亲生。

向广大社会公众提供准确、可靠的亲子关系鉴定服务。蓝沙实验室采用高通量测序技术,并配备市面先进检测设备;为确保结果的准确性,实施了包含样本质检、生产质检、报告质检三层质检流程,结合生物信息分析与计算机数据分析技术,对检测过程进行严格的质量监控和比对,确保每一位客户都能得到精确可靠的鉴定结果。